
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 264 (2003) 1187–1194

Letter to the Editor

On the average continuous representation of an
elastic discrete medium

I.V. Andrianova, J. Awrejcewiczb,*
a Institute of General Mechanics, RWTH Aachen, Templergraben 64, D-52062 Aachen, Germany

bDepartment of Automatics and Biomechanics, Technical University of Ł !od!z,

1/15 Stefanowskiego Street, 90-924 Ł !od!z, Poland

Received 16 November 2000; accepted 29 October 2002

1. Introduction

It is well known that difference and difference-differential equations are often used for the
numerical solution of partial differential equations. A natural problem is to obtain a difference-
differential equation, whose solution approximates a solution of a given partial differential
equation. But an analytical study of the difference and difference-differential equations is often
more difficult than a study of the corresponding partial differential equation. Therefore the
following important problem appears: how can one construct a partial differential equation
approximating a given difference-differential equation?
Consider an N-mass oscillator (Fig. 1). The equations of motion and boundary conditions may

be written as follows:

M .yjðtÞ ¼ djþ1ðtÞ � djðtÞ; ð1Þ

d0ðtÞ ¼ �f ðtÞ; dnðtÞ ¼ 0; j ¼ 0; 1; :::; n � 1; ð2Þ

where yjðtÞ is the displacement of the j-point, djðtÞ ¼ cðyjðtÞ � yj�1ðtÞÞ; djðtÞ is force of interaction
between the (j � 1)- and j-point.
System (1) may be reduced to the form

MdjðtÞ ¼ cðdjþ1 � 2dj þ dj�1Þ; j ¼ 0; 1;y; n � 1: ð3Þ

Consider the homogeneous initial conditions:

djðtÞ ¼ djtðtÞ ¼ 0 for t ¼ 0; j ¼ 0; 1;y; n � 1: ð4Þ
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For large values of n, usually a continuous approximation to the lumped problem (2)–(4) is
applied:

Mdttðx; tÞ ¼ cH2dxxðx; tÞ; ð5Þ

dð0; tÞ ¼ �f ðtÞ; dððn þ 1ÞH; tÞ ¼ 0; ð6Þ

dðx; 0Þ ¼ dtðx; 0Þ ¼ 0; ð7Þ

where H corresponds to the distance between masses;

ð:::Þx ¼
@

@x
ð:::Þ; ð:::Þt ¼

@

@t
ð:::Þ:

Having a solution to boundary value problem (5)–(7), one can obtain a solution to the discrete
problem using the formula

djðtÞ ¼ dðjH; tÞ; j ¼ 1; 2; :::; n:

Taking f ðtÞ ¼ �1; it is not difficult to find the exact solution to boundary value problem
(3)–(5) [1]:

dðx; tÞ ¼ G nH arcsin sin
p
2n

ffiffiffiffiffiffi
c

M

r
t

� �����
����� x

� �
;

where G is the Heaviside step function.
Therefore the estimation

dðx; tÞj jp1 ð8Þ

holds for the whole time interval. From a physical point of view, it means that the force values in
various sections of the continuous approximation do not exceed a given force value.
Kurchanov et al. [2–6] have considered a motion of the N-mass oscillator (2)–(4) and its

continuous approximation (5)–(7). The authors of Ref. [2] wrote:

‘‘On the basis of these and some other approximate arguments, some authors (e.g., Refs. [1,7])
have assumed that an analogous inequality (8) holds for all components of the solution of
system (3), provided only that n is large enough. However, direct computations for large
n ¼ 40; 80; 120 have shown that the values of djðtÞ at certain times (different for different jth)
may considerably exceed 1 (by a few dozen percent).’’
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Fig. 1. The mass chain governed by Eqs. (1) and (2).
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In the language of mechanics, what we just said means that when analyzing the so-called ‘‘local
properties’’ of a one-dimensional continuous medium, one cannot treat the medium as the limiting
case of a linear chain of point masses, obtained when the number of points increases without limit.
In other words, the transition from the N-mass oscillator to the continuous medium can be

accompanied by the loss of some subtle effects, and it was named ‘‘peaks’’ in Ref. [3].
The described phenomenon will be further referred to as the Kurchanov–Myskis–Filimonov

paradox, which will be further analyzed.
It is worth noting that oscillation of the N-mass oscillator was analyzed in Ref. [8]. It is

worthless noticing that authors of Ref. [8], written in 1994, found the sum of some series on the
basis of physical consideration and they mentioned: ‘‘Despite great efforts, the authors have not
been able to find a mathematical way to obtain the sum’’. However, this sum has rigorously been
reported in Ref. [2].

2. Eigenfrequencies

Assuming f ðtÞ ¼ 0; the relations between the eigenfrequencies of oscillations of both lumped
(2)–(4) and continuous (5)–(7) systems will be investigated.
Lumped system (2)–(4) possesses (n þ 1) eigenfrequencies of the form

ok ¼ 2

ffiffiffiffiffiffi
c

M

r
sin

kp
2ðn þ 1Þ

; k ¼ 1; 2; :::; n þ 1: ð9Þ

The continuous system (5)–(7) has an infinite discrete spectrum of the form

ok ¼ p

ffiffiffiffiffiffi
c

M

r
k

ðn þ 1Þ
; k ¼ 1; 2;y : ð10Þ

Formula (10) approximates frequencies (9) sufficiently good only for the first 10 lower
frequencies. However, for large k values, this approximation cannot be accepted (for example,
onþ1 is estimated with the error being larger than 50%, because one has to deal with the
coefficient p instead of 2). Furthermore, the frequencies onþ2; onþ3; y of the continuous system
do not have any relations to the discrete system. They are referred as the parasite frequencies and
must be omitted while investigating the discrete system.
In the case considered, when the one-dimensional system is investigated, in order to

approximate the system with n frequencies, one takes the first n frequencies of a continuous
system.

3. Non-autonomous case

Consider boundary value problem (5)–(7). Taking f ðtÞ ¼ �1; a solution is sought in
the form

dðx; tÞ ¼ �1þ
x

ðn þ 1ÞH
þ uðx; tÞ: ð11Þ
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Thus, the function uðx; tÞ is defined by the following boundary value problem:

Mutt ¼ cH2uxx; ð12Þ

uð0; tÞ ¼ uððn þ 1ÞH; tÞ ¼ 0; ð13Þ

uðx; 0Þ ¼ 1�
x

ðn þ 1ÞH
; utðx; 0Þ ¼ 0: ð14Þ

In this case, a solution to (11)–(13) is approximated by the Fourier series

u ¼
ðn þ 1ÞH

p

XN
k¼1

sin ðkpx=ððn þ 1ÞHÞÞ
k

cos ðaktÞ;

where

ak ¼ p

ffiffiffiffiffiffi
c

M

r
k

ðn þ 1Þ
:

Finally one has

dðx; tÞ ¼ �1þ
x

ðn þ 1ÞH
þ

ðn þ 1ÞH
p

XN
k¼1

sinðkpx=ððn þ 1ÞHÞÞ
k

cos ðaktÞ: ð15Þ

The solution obtained governs the motion of a continuous system. Now, if one would like to
approximate the N-mass oscillator motion, then in the infinite sum, only the ‘‘n þ 1’’ harmonic
must be included. The others have no any relation to the motion of the N-mass chain. In other
words, the motion of discrete system (1) can be approximated by the formula

dðx; tÞ ¼
x

ðn þ 1ÞH
� 1þ x þ

ðn þ 1ÞH
p

Xnþ1

k¼1

sin ðkpx=ððn þ 1ÞHÞÞ
k

cosðaktÞ: ð16Þ

The numerical calculations for n ¼ 60; 80; 120 show that d can exceed 1, which is in agreement
with the comments in Refs. [2–6].
It is worth noting that the method involves finding the sum of a finite number of terms of the

Fourier series, and does not approximate an arbitrary function by an infinite Fourier series. This
excludes an occurrence of the Gibbs phenomenon.

4. Higher accuracy of continuous approximation

Although the obtained solution (16) properly qualitatively approximates the motion of the N-
mass chain, its accuracy is rather low. The eigenforms in a neighbourhood of ‘‘n þ 1’’ governed by
approximation (3) are not accurate enough. In order to improve the accuracy, the following
approach is proposed.
Formally a discrete-difference operator D is replaced with a high-order differential operator,

using the following identity [9]:

D ¼ exp
@

@x

� �
� 2þ exp �

@

@x

� �
or the pseudo-differential operator sin2ð�ðiH=2Þð@=@xÞÞ [10].
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System (2) can be presented in the form [9–13]:

M
@2d
@t2

þ 4c sin2 �
iH

2

@

@x

� �
d ¼ 0: ð17Þ

The pseudo-differential operator sin2ð�ðiH=2Þð@=@xÞÞ can be developed into the Taylor series in a
neighbourhood of zero:

sin2 �
iH

2

@

@x

� �
¼ �

H2

4

@2

@x2
þ

H4

48

@4

@x4
�

H6

1440

@6

@x6
þ? : ð18Þ

Taking into account only the first term in Eq. (18), one gets the classical continuous
approximation (5). However, taking into account the three first terms, the approximation
obtained reads

M
@2d
@t2

¼ cH2 @2d
@x2

�
H2

12

@4d
@x4

þ
H4

360

@6d
@x6

� �
: ð19Þ

Comparing the (n þ 1)th frequency of the continuous system (19) with the (n þ 1)th frequency
of the N-mass oscillator indicates a sufficient increase of the accuracy (we get the coefficient 2.11
instead of 2 in the exact solution). Therefore, solution (16) serves as a good approximation to the
motion of the N-mass chain, where

ak ¼ p

ffiffiffiffiffiffi
c

M

r
k

n þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

p2k2

12ðn þ 1Þ2
þ

p4k4

360ðn þ 1Þ4

s
:

The proposed approximation has been already used within the frame of the theory of elasticity
[11] and in the method of a differential approximation [12].

5. ‘‘High-frequency averaging’’ and the composite equations

The operator occurring in Eq. (17) can be also approximated as follows:

sin2 �
iH

2

@

@x

� �
¼ 1þ

H2

4

@2

@x2
þ? ð20Þ

and the continuous approximation can be presented in the form (see also Refs. [13,14])

M
@2d
@t2

þ 4cdþ cH2 @
2d

@x2
¼ 0: ð21Þ

The equation

M
@2d
@t2

þ 4cd ¼ 0

describes the ‘‘saw-tooth’’ oscillations of the N-mass oscillator, di ¼ �di�1:
Eq. (21) governs the N-mass oscillator oscillations of the close to the ‘‘saw-tooth’’ shape form.
The existence of continuous approximations (5) and (21) give the possibility to construct the

composite equation [15,16], which is uniformly suitable in the whole interval of the frequencies
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and the oscillation forms of the chain of masses. Let us emphasize that the composite equations,
due to Van Dyke [17], can be obtained as a result of synthesizing the limiting cases.
The principal idea of the method of the composite equations can be formulated in the following

way [17, p. 195]:

(i) Identify the terms in the differential equations, whose neglect in the straightforward
approximation is responsible for the non-uniformity.

(ii) Approximate those terms insofar as possible while retaining their essential character in the
region of non-uniformity.

In the present case, the composite equation will be constructed in order to overlap
(approximately) with Eq. (5) for k5ðn þ 1Þ; whereas for k ¼ ðn þ 1Þ; this ‘‘new’’ equation should
yield the exact frequency value. As a result of the procedure described, one obtains

M 1� a2H2 @2

@x2

� �
@2d
@t2

� cH2 @
2d

@x2
¼ 0; ð22Þ

where a2 ¼ ðp2 � 4Þ=16:
The kth oscillation frequency is obtained from the formula

ok ¼ p

ffiffiffiffiffiffi
c

M

r
k

n þ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

a2H2p2k2

ðn þ 1Þ2

s : ð23Þ

It is not difficult to check that Eq. (23) yields the frequency values close to the frequencies of the
N-mass oscillator for kA½1; n þ 1�: The largest error is achieved for ½k=ðn þ 1Þ� ¼ 0:5; where [(y)]
is the integral part of (y).
The multiplier appearing in the exact solution is equal to

ffiffiffi
2

p
; whereas the multiplier appearing

in Eq. (23) is equal to 1.34 (the error is 5%).
Therefore, Eq. (22) can be used for the motion analysis of the N-mass chain. In this case, the

solution has the form of Eq. (16), where

ak ¼ p

ffiffiffiffiffiffi
c

M

r
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn þ 1Þ2 þ p2a2H2k2

q : ð24Þ

The numerical calculations using solutions (16) and (24) are in agreement with the theoretically
predicted peaks [2–4].

6. Concluding remarks

Ulam [18, pp. 89, 90] wrote: ‘‘The simplest problems involving an actual infinity of particles in
the distributions of matter appear already in classical mechanics. A discussion of these will permit
us to introduce more general schemes which may possibly be useful in future physical theories.
Strictly speaking, one has to consider a true infinity in the distribution of matter in all problems

of the physics of continua. In the classical treatment, as usually given in textbooks of
hydrodynamics and field theory, this is, however, not really essential, and in most theories serves
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merely as a convenient limiting model of finite systems enabling one to use the algorithms of the
calculus. The usual introduction of the continuum leaves much to be discussed and examined
critically. The derivation of the equations of motion for fluids, for example, runs somewhat as
follows. One images a very large number N of particles, say with equal masses, constituting a net
approximating the continuum which is to be studied. The forces between these particles are
assumed to be given, and one writes the Lagrange equations for the motion of N particles. The
finite system of ordinary differential equations ‘‘becomes’’ in the limit N ¼ N one or several
partial differential equations. The Newtonian laws of conservation of energy and momentum are
seemingly correctly formulated for the limiting case of the continuum. There appears immediately,
however, at least one possible objection to the unrestricted validity of this formulation. For the
very fact that the limiting equations imply tacitly the continuity and differentiability of the
functions describing the motion of the continuum seems to impose various constraints on the
possible motions of the approximating finite systems. Indeed, at any stage of the limiting process,
it is quite conceivable for two neighbouring particles to be moving in opposite directions with a
relative velocity which need not tend to zero as N becomes infinite, whereas the continuity
imposed on the solution of the limiting continuum excludes such a situation. There are, therefore,
constraints on the class of possible motions which are not explicitly recognized. This means that a
viscosity or other type of constraint must be introduced initially, singling out the ‘‘smooth’’
motions from the totality of all possible ones. In some cases, therefore, the usual differential
equations of hydrodynamics may constitute a misleading description of the physical process.’’
It happened that the problem described by Ulam have been numerically observed and

mathematically investigated by Kurchanov et al. [2–6]. It is rather to be expected that the
averaged relations do not allow getting reliable results for all possible potential behaviours.
However, the problem can be formulated in the following manner: Is it possible to construct a
partial differential equation governing the dynamics of a lumped system?
This paper, and the results included in Refs. [5,6] indicate that this is possible, but many

problems of mathematical nature must be still clearly stated and appropriately solved.
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